
A formal analysis of recovery in a preservational data grid

Niels H. Christensen
Royal Library of Denmark, Dept. of Digital Preservation

& Netarkivet.dk
nhc@kb.dk

Abstract

A data grid made for the long-term preservation of digi-
tal materials is described. The data grid’s ability to recover
from data loss is analysed by developing a formal, mathe-
matical model for the relevant, implemented software op-
erations.

1. Introduction

This extended abstract1 presents an analysis of a system
built for long term data preservation. The analysed sys-
tem was developed by Netarkivet, the national Danish web
archive, and is used for storing large amounts of crawled
web pages. The system is in essence a data grid based on
distributed, online file systems. The analysis investigates
its capabilities for recovering from events that cause dam-
age to or loss of data.

1.1. Motivation and related work

The threat of latent failures. The recent paper [1]
presents a detailed list of threats to the long-time preserva-
tion of digital materials, and discusses some of the danger-
ous assumptions digital preservationists may fall prey to.
One important aspect studied in the paper is fault visibil-
ity. Some failures (e.g. total breakdown of a hard disk) are
immediately visible, while others (e.g. “silent” block faults
on hard disks) are latent, i.e. only detectable after active
inspection. This implies that low fault detection time (for
latent faults) is a very important parameter when designing
digital archives.

Data grids as preservation platforms. In [2] the term
data grid is introduced to describe an integrated architec-

1This work was presented at MSST2006, the 14th NASA Goddard -
23rd IEEE Conference on Mass Storage Systems and Technologies, May
15-18, 2006, College Park, Maryland USA

ture common to many systems handling large-scale, geo-
graphically distributed datasets. The paper [5] describes
data grids as software systems that support the creation
of collections that span storage systems located in mul-
tiple administration domains. It also discusses how data
grids can incorporate commodity-based disk caches, Grid
Bricks. A Grid Brick is a storage appliance with a particu-
lar software stack already installed on it. [5] particularizes
the definition to mean a commodity disk cache on which
data grid technology is installed to provide a logical name
space. The Grid Brick is an extension of the idea of Cyber-
Bricks. A CyberBrick is a stand-alone system, containing
not only the disk but also the associated controlling CPU
and network access. Grid Bricks integrate data grid man-
agement services with CyberBrick commodity hardware.

The paper [4] analyses requirements for systems that
support the long-term storage of digital records (called
preservation environments). Data grids based on Grid
Bricks are recommended for building preservation environ-
ments that minimize the risk of data loss and preserve au-
thenticity and integrity of stored data.

Their opinions are backed by the conclusions of [1]. Un-
like more traditional storage management technology, data
grids federating storage on large numbers of GridBricks are
able to keep several copies of each data object online and
thus efficiently inspectable. Constant monitoring and com-
parison of online copies makes it possible to keep fault de-
tection time low.

Example preservation environments based on data
grids. [4] also describes an example implementation of
the suggested architecture. Other examples of preserva-
tion environements building on the same philosophy in-
clude LOCKSS, the Internet Archive and Netarkivet.

LOCKSS is a free, open-source application aimed at
preserving access to academic materials that a library li-
censes from a publisher website ([6]). LOCKSS applica-
tions communicate via network to help each other reestab-
lish damaged or lost copies of materials. Much attention is
given to the prevention of malicious attacks on this network

1

communication. The LOCKSS strategy against attacks is
based on a voting and reputation system and insisting on
slow communication (preferring security to speed).

The Internet Archive2 has been archiving the World
Wide Web since 1996. Their data grid relies on Grid Bricks
and currently stores more than 500 terabytes of materials.
The Internet Archive architecture was a strong inspiration
when Netarkivet’s own data grid was developed.

The goal of Netarkivet is to collect and preserve Dan-
ish cultural heritage on the Internet. We currently have
four servers constantly crawling Danish web pages. The
crawled pages are stored in a data grid specially developed
for the purpose of preserving these materials for the long
term. The main requirements for the design of this data
grid has been securing the stored data against risks of loss
and alteration. The paper [3] describes Netarkivet’s data
grid (in terms different from the ones used in this paper)
and reports on a number of computer simulations that were
run in order to predict the longevity of the archived data
(the so-called mean time to failure of the archive).

1.2. Outline

This extended abstract relates to those procedures in Ne-
tarkivet’s data grid that allows the system to recover from
events that cause damage to or loss of data on a single Grid
Brick or server. It describes ongoing work to review, im-
prove and extend the implemented set of recovery opera-
tions. Section 2 explains the architecture of Netarkivet’s
data grid with focus on the preservation aspects. Section 3
provides a formal (mathematical) model of the recovery
operations mentioned above. Based on this model, Sec-
tion 4 goes through a number of scenarios related to data
loss/damage and describes if and how each scenario can be
handled by the currently implemented recovery operations.
The last section concludes on the analysis itself and on the
method of reviewing recovery operations by developing a
formal model. It also discusses the further work that needs
to be done.

2. The Netarkivet data grid

2.1. Architecture

Netarkivet’s data grid is organized in three layers. On
the lowest layer, it consists of a number of Grid Bricks,
each one running the same server application, called the
GridBrickServer, that manages the data stored on that Grid
Brick. In the middle layer, each Grid Brick joins one sub-
grid. The software application that federates GridBrick-
Servers into a subgrid is called the SubgridServer. In the

2http://www.archive.org/

top layer of the architecture, subgrids are joined into the
complete data grid of Netarkivet. The central software ap-
plication that federates subgrids into a single data grid is
called the RepositoryServer. The RepositoryServer man-
ages a content index which is essentially a register that con-
tains the name and MD5 digest (sometimes called check-
sum or fingerprint) of every file stored in Netarkivet’s grid.

(Note: in [3] the GridBrickServer application is
named “BitArchiveServer” while a subgrid is called a
“BitArchive”).

Every subgrid manages a copy of every data file stored
in Netarkivets data grid. This propagation is handled by the
RepositoryServer’s store()-operation which we shall not
discuss in this paper (although it does build on the tech-
niques described below). None of the subgrids are consid-
ered primary.

Subgrids are geographically separate, so that most “ex-
ternal” events (fire, major power outages, natural catastro-
phies etc.) should only affect one subgrid. Subgrids are
also administratively separate, so that the harmful action of
one system administrator (whether intentional or by acci-
dent) can only affect one subgrid.

The current Netarkivet installation. In the current in-
stallation Netarkivet has two subgrids: One in Copenhagen
maintained by the Royal Library of Denmark and one in
Aarhus maintained by the State and University Library. Ne-
tarkivet decided to make the two subgrids different in archi-
tecture to minimize preservation risks related to systematic
errors in equipment or operating systems. The Copenhagen
subgrid is running Windows XP, while the Aarhus subgrid
is Linux-based.

2.2. Preventing, discovering and recovering from
storage failures

No direct contact with the file systems. One of the de-
sign decisions of Netarkivet’s data grid was to discourage
any direct interactions between system administrators and
the file systems on the Grid Bricks. A command line login
is a powerful tool that enables its user to accidentally delete
large amounts of data in very short time.

A consequence of this decision is that the software (the
GridBrickServer) must support all necessary operations on
the file system, but with a less failure-prone interface than
the command line.

Constant, automated monitoring. Some of the events
that can damage stored data are immediately visible, e.g.
the complete breakdown of a disk will normally be visi-
ble through standard hardware monitoring systems. Other
types of events are latent (as described in [1]) and must
be discovered through more active monitoring operations.

2

One of the great advantages of online data grids as a plat-
form for preservation is that such error discovery opera-
tions can be performed automatically and efficiently, unlike
preservation systems based on near-line or offline storage.

In Netarkivet, active fault detection is performed
through batch jobs supported by the SubgridServer and the
GridBrickServers. Batch jobs are executed on both Ne-
tarkivet’s subgrids on a fixed time schedule.

Recovery operations: manual accept, programmatic ex-
ecution. As mentioned above, the system implements a
number of operations to fix discovered problems without
logging on to the affected servers. These operations have
been thoroughly tested in a safe environment.

The operations are all 100% automatic but cannot be ini-
tiated without a manual accept (clicking “OK” in the user
interface). This decision was made to prevent an error in
the software to suddenly modify large amounts stored data.

The three operations supported at the moment are:
Restoring a file missing in one subgrid, deleting a damaged
file from one subgrid, and correcting a wrong entry in the
cental content index.

A precise model of these operations is given in the next
section.

3. A formal model of Netarkivet’s recovery
operations

Simplifications. To save space and keep focus on the
central points we will make a few simplifications before
modelling the Netarkivet system:

• The following model is specific to 2 subgrids (and 1
conent index). Our RepositoryServer is able to handle
more subgrids, but describing the operations in full
generality would be rather more complex. We name
the two subgrids east and west respectively. We refer
to the content index as idx.

• Each subgrid may (by error) contain several identical
copies of a given file. This is a waste of resources but
not in itself a threat to the preservation and we do not
model this situation.

3.1. File preservation status

Each operation acts on a single file f in the data grid.
Before carrying out any other action, the system checks the
current status of the file on both subgrids and in the content
index. This ensures that recovery actions are not performed
on the basis of information (from a batch job) that may be
several days old.

Model. The status information collected in this prephase
consists of the following three attributes:

Didx(f) The MD5 digest of f found in the content index
(if any was registered).

Deast(f) The MD5 digests of all occurrences of f in sub-
grid east.

Dwest(f) The MD5 digests of all occurrences of f in sub-
grid west.

We model each of these three attributes as a set of bit se-
quences. The implementation of the content index ensures
that Didx(f) contains at most one element.

Status examples. The desired status of a file f is:

Didx(f) = {d}
Deast(f) = {d}
Dwest(f) = {d}

for some bit sequence d. This status indicates that both sub-
grids have excatly on copy of f , and that this copy has the
same MD5 digest that was registered in the content index
when f was originally stored.

If the file f was lost in subgrid east (say, due to a broken
disk on the Grid Brick that stored it), the picture would look
like this:

Didx(f) = {d}
Deast(f) = /0
Dwest(f) = {d}

3.2. The recovery operations

With two subgrids, the Netarkivet data grid support five
distinct recovery operations:

fixidx(f) Corrects a wrong entry for file f in the cental con-
tent index.

deleast(f) Deletes a damaged file f from the east subgrid.

delwest(f) Deletes a damaged file f from the west subgrid.

cpeast(f) When file f is missing in east, restores it by
copying f from west.

cpwest(f) When file f is missing in west, restores it by
copying f from east.

Each of these operations requires certain conditions to
be satisfied when it is applied. For instance, we do not
allow a file f to be restored if the remaining copy has an
MD5 digest that does not agree with the one registered in
the content index. These conditions and the effects of ap-
plying each operation are modelled in Table 1.

3

Table 1. Recovery operations in Netarkivet.
For each operation we list the conditions for
applying it and its effect when applied.

Op. Preconditions Effect

fixidx(f)
Didx(f) = {d′}
Deast(f) = {d}
Dwest(f) = {d}

Didx(f) = {d}

deleast(f)
Didx(f) = {d}

Deast(f) = {d′}
Dwest(f) = {d}∨ |Dwest(f)| 6= 1

Deast(f) = /0

delwest(f)
Didx(f) = {d}

Deast(f) = {d}∨ |Deast(f)| 6= 1
Dwest(f) = {d′}

Dwest(f) = /0

cpeast(f)
Didx(f) = {d}
Deast(f) = /0

Dwest(f) = {d}
Deast(f) = {d}

cpwest(f)
Didx(f) = {d}
Deast(f) = {d}
Dwest(f) = /0

Dwest(f) = {d}

4. Failure scenarios and recovery

This section will discuss a number of scenarios in which
Netarkivet’s data grid will yield a status for a file f that is
different from the desired one. In each scenario we use the
above model to discuss the possibilities of recovering from
the faults using the five recovery operations.

Some of the scenarios may seem quite unlikely, but
when building a system for long-term preservation one
must consider even very improbable event.

It is conjectured that the below list covers all cases that
can occur in our model of the system. A formalization and
proof of this conjecture is work in progress.

Disk failure on a Grid Brick. A broken disk on a Grid
Brick will result in a number of files having the following
status (assuming the Grid Brick was part of the east sub-
grid:

Didx(f) = {d}
Deast(f) = /0

Dwest(f) = {d}

In this scenario, the cpeast(f) operation can be applied and
it will reestablish the desired status for each file.

Bit rot on a Grid Brick So-called “bit rot”, unreadable
disk sectors and other similar media failures (see [1]) will

cause some file f to have a status like the following:

Didx(f) = {d}
Deast(f) = {d′}
Dwest(f) = {d}

In this scenario, Netarkivet can recover by applying the
deleast(f) operation followed by cpeast(f).

Bit rot in the content index. Bit rot and similar media
failures affecting the content index will cause some file f
to have a status like the following:

Didx(f) = {d′}
Deast(f) = {d}
Dwest(f) = {d}

In this scenario, Netarkivet can recover by applying the
fixidx(f) operation.

Irrecoverable scenarios. Some failure scenarios – in
particular “double faults” where both copies of a file are
damaged or lost – are irrecoverable by nature. As a mat-
ter of principle, Netarkivet considers the situation where
no MD5 digest for a file f is reported by more than one
system entity

Didx(f)∩Deast(f) = Didx(f)∩Dwest(f) = Deast(f)∩Dwest(f) = /0

as irrecoverable. The rationale for this principle is that it re-
quires human judgement to determine which (if any) copy
of f is undamaged.

Deletion of the content index. This will result in many
files having Didx(f) = /0. None of the currently imple-
mented operations can be applied in this situation.

Appearance of one or more extra copies of a file in a
subgrid. If the copies are not identical, this should result
in a file f with e.g. |Deast(f)|> 1. None of the currently im-
plemented operations enables the removal of a “bad” file,
if the given subgrid has more than one copy of the file.

A special case with multiple copies in a subgrid. In
the particular case where the content index has registered
a wrong MD5 digest for a file f and one subgrid (say, east)
contains an undamaged copy of f and one or more dam-
aged copies of f ,

Didx(f) = {d′}
Deast(f) = {d,d′}

Dwest(f) = {d}

the operation delwest(f) can actually remove an undamaged
copy of f from the subgrid west! This bug in the design of

4

cp was not revealed until the analysis presented here was
worked out. The bug is expected to be fixed in the next
release of Netarkivet’s software.

5. Conclusion and next steps

Status and developments in the software of Netarkivet
The conclusion of the analysis is that the supported operar-
ions enables the system to recover from several events that
cause data loss or damage. The analysis has also pointed
out the scenarios that Netarkivet’s system should be ex-
tended to handle, and it has uncovered an actual bug in the
current version of the software running on the data grid.

The author is currently working on establishing that the
list of scenarios discussed in Section 4 is complete, i.e. that
every possible files status has been considered. When a
proof of completeness has been worked out, the plan is to
discard with the simplifications listed in Section 3, i.e. to
generalize the analysis to cover

• Installations with more than two subgrids and more
than one content index.

• Subgrids containing several identical copies of a given
file f .

The next step will be to design and implement an improved
and extended set of recovery operations that cover all sce-
narios in a satisfiable manner.

Recovery in other data grids As discussed in the intro-
duction, data grid technology is becoming popular as the
basis of systems intended for long-term preservation of dig-
ital materials. While the operations described are propri-
etary to Netarkivet’s systems, most preservation environ-
ments based on grid technology should implement a set
of similar operations for recovering after loss of or dam-
age to a copy of a file. It should be possible to adapt the
above analysis to other such systems. Even if an adaption
of the analysis itself turns out to be impractical, the au-
thor would recommend preservation environment design-
ers to make their own simple but precise, formal analyses
of data loss scenarios. The effort has been very worthwhile
in the case of Netarkivet. A preservation environemt’s abil-
ity to recover from failures is essential to its purpose, and
a precisely formulated design can prevent many bugs and
misunderstandings in the implementation and use of that
functionality.

References

[1] M. Baker, M. Shah, D. S. H. Rosenthal, M. Rous-
sopoulos, P. Maniatis, T. J. Giuli, and P. Bungale. A
fresh look at the reliability of long-term digital storage.
http://arxiv.org/abs/cs/0508130, Aug. 30 2005.

[2] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and
S. Tuecke. The data grid: Towards an architecture for the dis-
tributed management and analysis of large scientific datasets.
Journal of Network and Computer Applications, (23):187–
200, 2000.

[3] N. H. Christensen. Preserving the bits of the Danish internet.
In J. Masanes and A. Rauber, editors, Proceedings of the 5th
International Workshop on Internet Archiving (IWAW05).
http://www.iwaw.net/05/papers/iwaw05-christensen.pdf,
2005.

[4] R. W. Moore, J. JáJá, and R. Chadduck. Mitigating risk of
data loss in preservation environments. In Proceedings of the
22nd IEEE/13th NASA Goddard Conference on Mass Stor-
age Systems and Technologies (MSST 2005), pages 39–48,
2005.

[5] A. Rajasekar, M. Wan, R. Moore, G. Kremenek, and T. Gup-
til. Data grids, collections, and grid bricks. In IEEE Sympo-
sium on Mass Storage Systems, pages 2–9, 2003.

[6] D. R. V Reich. LOCKSS: A permanent web publishing and
access system. D-Lib Magazine, 7(6), June 2001.

5

